AD#	Zero Product Property (ZPP)
	1 0 ()

Name:

Definitions	Example	
Standard Form of a Quadratic Equation	An equation in the form $ax^2 + bx + c = 0$ where $a \neq 0$ is called a in form. The letters $a, b,$ and c are called The quadratic coefficient is the coefficient of x^2 , the linear coefficient is the coefficient of x , and c is the term.	
Zero Product Property	If the of two or more numbers is zero, then one or both of the numbers must be If <i>a</i> or <i>b</i> are two numbers where $a \cdot b = 0$, then $a = 0$, $b = 0$ or both = 0.	
Line of Symmetry	When a graph or shape can be folded in half so that the two halves are exactly the same, they are The line where two halves were folded is called a of	

1. Using the zero product property, solve the following equations.

a.(x-3)(x+6) = 0	b. $(2x-7)(x-3) = 0$
c. $(x+12)(2x-3) = 0$	d. $(x-5)^2 = 0$
e. $3x(x-2)(2x-9) = 0$	f. $(5x-3)(x-7) = 0$

2. Solve the following quadratic equations. If neede	2. Solve the following quadratic equations. If needed, set $= 0$ then factor.		
a. $x^2 + 6x + 8 = 0$	b. $0 = 3x^2 - 7x + 4$		
c. $3x^2 - x - 14 = 0$	d. $0 = 3(x - 3)(2x + 5)$		
e. $8 = 15x^2 + 2x$	f. $4x^3 + 30x^2 - 54x = 0$		
g. $5x^2 - x = 0$ (*hint GCF)	h. $18x^2 - 3x + 4 = -3x^2 - 12x + 16$		

2. Solve the following quadratic equations. If needed, set = 0 then factor.

3.a. Find the roots (x-intercepts) of $y = x^2 - 2x - 8$. (,) and (,)

What is the x-coordinate of the vertex? _____ How do you know?

- b. Use your answer from part (a) to find the y-coordinate of the vertex. Then write the vertex as a point (x,y).
- c. On your own graph paper, make a table and <u>*neatly graph*</u> the equation from part (a). \bigcirc